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Abstract

A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for

semilinear parabolic initial boundary value problems. Unlike any classical counterpart, this class

! offers arbitrarily high, optimal order convergence. In support of this claim, error estimates are

proved, and computational results are presented. Furthermore, it is noted that special Runge-

Kutta methods allow computations to be performed in parallel so that the final execution time can
be reduced to that of a low order method.
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1 Introduction

In this paper, three classes of semilinear initial boundary value problems are considered. Specifi-
cally, the goal is to construct and analyze fully discrete approximations to the unique solution u(x, t)
of:

du = —Lu+f in Qx][0,¢t*]
(1.1) u 0 on A x [0,t*]
u(x,0) = u’(x) in 0,

where: N
Lu=— Y 9.,(6;(0)9z,u) + fo(x)u,
i,5=1

and f takes one of the following forms:

(1.1.3) f=f(xt,u),
(1.1.1i) [ =g(x,t,u)- Vy,
(1.1.iii) [ = f(x,t,u,Vu).

Here, (1 is a bounded domain in RY with 32 sufficiently smooth. Also, £;(x) and £o(x) are assumed
to be smooth. Further, on (2, the matrix {£;} is symmetric and uniformly positive definite and
£y is nonegative. The initial data u° is assumed to be both sufficiently smooth and compatible,
and precise hypotheses on the required smoothness of the solution u are made as needed. Then,
in the respective sections, it is assumed that there exist constants p, ¢, > 0 such that for all
(x,t) € 0 x [0,t*], one of the following local Lipschitz properties holds. Specifically, it is assumed
that in case (1.1.i):

(12) WG ) =Tl <o = [f06tu) ~ f008,U)| S cplulx,8) - U,
in case (1.1.ii), for 1 < ¢ < N:

(1'3) Iu(x7 t) - UI <p = |g.-(x, t,“(x’ t)) - gi'(x) L U)I < cplu(x’ t) - U‘)
and in case (1.1.iii), for 1 < 5 < N:

lu(x,t) — Uo| < p |£(x, ¢, u(x,t), U) — f(x,t,Us, U)| < ¢c,|u(x,t) — Uo|
(1.4) and => . and
max [0,u(x,t) ~ Uil <p  |f(x,8,00, V) = f(x,1,U0, V)| < ¢5]0z,u(x,1) - Ujl,
S1s

where V'-j = U;, 1 # 7 and V;:i = 9,u(x, t). In addition, to prove certain estimates for case (1.1.iii),
it is assumed that:

IU(X, t) - Ul <p
(1.5) and = max 103.,,/(x,t,Uo,U) <<,
23 |9;,u(x, t)-Uil<p



where 84, f denotes partial differentiation of f with respect to its argument connected with the jth
spatial derivative of u. See the remarks prior to Proposition 4.3 for an explanation of the division
(1.1.) - (1.1.ii).

Now, for 1 < p < oo and integers 8 > 0, let W*? = W*P((1) represent the well-known Sobolev
spaces consisting of functions with (distributional) derivatives of order < s in L, = L,(f2). Also,
let || - ||we» denote the usual norm. Then, in particular, take H* = W*? and denote its norm by
|l - lls- In addition, let H} be the subspace of H! consisting of functions vanishing on 8Q in the
sense of trace. Its dual is denoted by H~! with norm || - ||—;. Next, let the inner product on L; be
denoted by (:,-), and the associated norm by || - ||. Further, || - ||z., represents the norm on L,
and || - ||5,c0 the norm on Lo ([0,t*], H*). See Adams [1] for more details.

Equipped with the above notation, let the following be combined with (1.3) and (1.4), respec-
tively. Specifically, assume that in case (1.1.ii):

(L.6) R P llg: (2, u(t))lwree = ¢4 < o0,

and in case (1.1.iii):

(1.7) (2K S 184, £(t, u(t), Vu(t))[lwie = 5 < oo.
Now, let L be extended to have domain H2N H}. Then, L is La-selfadjoint and for every nonegative
integer s, it is bounded from H**? N H} into H®. Furthermore, introducing the solution operator
T for the elliptic problem:
Lv = w in 0
v = 0 on 890

as Tw = v, it is well-known (Friedman [12]) that for every nonnegative integer s, T is bounded
from H* into H**2 N H}. Also, the solution operator is positive definite and selfadjoint on Ly;
hence, T has a square root and it can be shown (Thomée [18]) that:

(1.8) T3] < ¢||v]|-1 Yve HL.

Note that here and throughout this work, ¢ (sometimes with a subscript) is used to denote a general
positive constant, not necessarily the same in any two places. Moreover, if in a given (in)equality,
there is a crucial element upon which c is meant to depend, such dependence is indicated explicitly.
A rough description of the results now follows. For this, let h and k denote spatial and temporal
discretization parameters respectively, and suppose that U is a fully discrete approximation to
u(nk) obtained according to (1.34) described below. Now, in section 2, the error committed for the
approximation of the solution to (1.1) in case (1.1.i), is shown to be of optimal order in Lj:

(1.9) m'?x“U,':—u"H = O(h" + k)

under the condition that A~/ 2(h" + k¥) is sufficiently small. Here, r and v represent respectively,
optimal exponents, characteristic of the Galerkin method and the Runge-Kutta method upon which
the fully discrete scheme is based. Next, section 3 deals with case (1.1.ii) and the same optimal
L estimate is established but under the additional condition that h~N/2k~1/2(h" 4 k) is small

enough. Finally, in section 4, case (1.1.iii) is studied, and it is proved that the error is of optimal
order in H!:




(1.10) max||UF — u"ly = O (K"~ + )

provided h~N/2(h"~! 4 k¥) is small enough. Then, a duality argument is used to obtain (1.9). For
each of the cases (1.1.i) - (1.1.iii), results for the starting scheme (1.37) are stated without proof,
since what is presented for the principal scheme (1.34) captures the main ideas with fewer details.
Nevertheless, complete proofs are provided in [14]. Also, in the latter, linear problems with time
dependent coefficients and quasilinear problems are considered. Further, preconditioned iterative
methods are combined with specially constructed Galerkin/Runge-Kutta schemes and the results
obtained are similar to those reported here.

It should also be mentioned that the discovery of the methods described below was fortuitous.
Note that there are extrapolation options other than (1.33) and (1.36), which are apparently more
natural. For example, T e could be used instead of I! A'e in (1.32) and (1.35), since this is suggested
by the case that f = f(x,t). On the other hand, an iterative procedure could be used during
initial time steps to approximate fully implicit stages, and this might be followed with a standard
extrapolation using previously computed stages to approximate stages for the current time step.
Both of these ideas are considered in a computational section. However, under rather general
conditions, optimal order convergence is proved and demonstrated computationally only for (1.34)
and (1.37). In fact, for the linear nonhomogenous problem, Crouzeix [8] has developed an explicit
example showing that unless 8}u is in the domain of L™ for certain I and m, a classical fully discrete
scheme fashioned after (1.25) cannot be expected to offer optimal order convergence.

In [4), Baker, Dougalis, and Karakashian analyze Galerkin/Multistep fully discrete approxi-
mations for the solution of (1.1) in case (1.1.i). Assuming local Lipschitz properties, they prove
an optimal L, error estimate such as (1.9). In connection with case (1.1.ii), they have obtained
similar results for the Navier-Stokes equations [3]. Also, for quasilinear equations which embrace
case (1.1.ii1), Bramble and Sammon* have announced results including an optimal L; estimate for a
Galerkin/Obrechkoff method which is fourth order in time. Finally, note that in [11], Dougalis and
Karakashian analyze Galerkin/Runge-Kutta approximations for the Korteweg-De Vries equation,
and they prove optimal L, estimates for some modified IRKM’s which are up to fourth order in
time. Hence, the spirit of their work is similar to that of the present study.

In the remainder of this section, there is a presentation of material relevant to the spatial and
temporal discretizations considered here, which concludes with a precise definition of the schemes
for which the above claims are made.

Spatial Discretizations

In terms of the solution operator, (1.1) can be written as:

(1.11)

B,Tu = —U+Tf
u(0) = ul.

For the spatial approximation of the solution to this problem, let {S,}o<h<1 be a family of finite-
dimensional subspaces of H. Then, suppose that a corresponding family of operators {T},}o<h<1
is given satisfying:

*Bramble, J. H., and Sammon, P. H., “Efficient Higher Order Single Step Methods for Parabolic Problems: Part
.»



i. Ty : Ly — S}, is selfadjoint, positive semidefinite on L3, and positive definite on Sj,.

ii. There is an integer r > 2 such that:

(1.12) (T = Tw)v|| + RI(T — Th)vllr < ch’||v||s—2 Yve H*?, 2<s<r.
Now, problem (1.11) has the following semidiscrete formulation. Find uy, : [0,¢*] — S such that:
OiThup, = —up+ Thfn
1.13
(1.13) { up(0) = u)

where f;, represents f depending on u, instead of u as indicated in one of (1.1.i) - (1.1.iii), and
u) € Sy, is a suitable approximation to ul.

To make the machinery more definite, consider the following Ordinary Galerkin Method. From
(1.1), let D(:,-) be a symmetric bilinear form defined by:

N
D(v’ w) = Z (&jaziv’ 6zjw) + (zov’w) v,w € H&
$,7=1

Then, take S;, to consist of continuous, piecewise polynomials of degree < r — 1, vanishing on 9€1.
Now, let T} : Ly — S;, be defined by:

D(Trw, x) = (w, x) Yw € Ly, Vx € Sh.

For more examples of Galerkin methods satisfying the assumptions above as well as others below,
see Bramble, Schatz, Thomée, and Wahlbin [5], and the references cited therein.
Next, the following inverse properties are prescribed for S,. Throughout this work, it is assumed

that S, C L, and:
(1.14) x|l ze < ch™ N2 x| VX € Sh.

Moreover, for cases (1.1.ii) and (1.1.iii), it is assumed that S, ¢ W1 and hence:

(1.15) Ixllw e < ch™2Ix]l1 VX € Sh.

In fact, for certain estimates related to case (1.1.iii), it is assumed that:

(1.16) Ixlwre < ch™¥EDxly VX E Sh, P2 2.

For details connected with (1.14) - (1.16), see Ciarlet [7].

According to the properties prescribed above, the restriction of Tj to S is invertible and its
inverse is henceforth denoted by Lj. Since L;, is also positive definite and selfadjoint on Sp, both
Ly and T}, have square roots but it is also assumed that:

1
(1.17) T2 wlly < ¢|lwl| Yw € La,

and:




L
(1.18) lIxllx < ell L x|l VX € Sh.
Defining the elliptic projection operator as Pg = T}, L, it follows from (1.12) that:
(1.19) (I = Pg)v|| + h||(I — Pe)v||x < ch®|v]|, YWe H°NH}, 2<s<r.
Also, it can be shown that L,T), = P, is the orthogonal projection of L; onto S;. Then, since
I — Py is majorized by I — Pg in Ly, it follows from (1.19) that:
(1.20) [I(T — Po)v|| < ch®||v||s Ywe H* NH:, 2<s<r.
In addition to (1.19), with w(t) = Pru(t), it is assumed for case (1.1.i) that:

(1.21) sup ||lu(t) — w(t)llL
0<t<tr

= v5(h) — O, ash — 0.

oo

Further, for cases (1.1.ii) and (1.1.iii), it is assumed that:
(1.22) sup |lu(t) — w(t)|lwres = m(h) — 0, ash— 0.
0<t<te

For details connected with (1.21) and (1.22), see Rannacher and Scott [16], and Schatz and Wahlbin
[17].
Now, problem (1.13) takes the following form. Find uy, : [0,#*] — S}, satisfying:

dtup = —Lpup+ Pofy
1.23
(1.23) { up(0) = .

In [4], Baker, Dougalis and Karakashian analyze approximations of the form (1.23) with f as in
(1.1.i). Assuming local Lipschitz properties, they prove an optimal Lz estimate:

|[w — uklloe = O(R").

In connection with case (1.1.ii), Baker* has obtained similar results for the Navier-Stokes equations.
Then in [10], Dendy studies Galerkin semidiscrete approximations for quasilinear problems which
embrace case (1.1.iii). Assuming global Lipschitz properties, he establishes the following:

lu = upll100 = O(A™Y) and llu — uplloeo = O (h™in(r2r-2-N/2))

In the present paper, semidiscrete approximations are not analyzed. Instead, {1.23) serves only as a
source of inspiration for fully discrete approximations, and u, is not even mentioned in forthcoming
proofs.

Temporal Discretizations

For the temporal approximation of the solution to (1.23), Implicit Runge-Kutta Methods
(IRKM’s) are now introduced. Given an integer ¢ > 1, a g-stage IRKM is characterized by a
set of constants:

*Baker, G. A., “Galerkin Approximations to the Navier-Stokes equation.”




a1 " QG | N1

Qg1 "*" Gqq | Ty
by - -- blql

and it is convenient to make the following definitions:

A= {a‘j}lﬁf,fﬁq’ T Eld<i?§q{n}’ T = (b1,b2,... ,bq), el = (1,1,...,1).

For the IRKM formulation used in this work, choose arbitrarily, to € R, yo € R*, F: R**! - R"
sufficiently smooth, and k > O sufficiently small, so that for t; < t < tp + k, smooth functions
Y,y : R — R" are well-defined by:

(7 =y
and: .

Y1) = yo+(t - to)D_ai;Flto+7i(t — o), y(t)), 1<ji<g
(1.25) 7t

¥(t) = yo+(t - ) _biF(to+ ri(t — to), ¥ (t))-

The method is described as ezplicit if a;; = 0, 1 < 7 and smplicit if for any 1, a;; # 0. Also, it is said
to have order v if for every y and § defined as above, D}y(to) = Diy(to), 0 < I < v. Butcher [6]
has developed simple conditions for the above parameters, which guarantee a given order; however,
only the following is explicitly required in this work:

(1.26) 1TA le=1 1<I<w.

To see the roots of condition (1.26), let (1.24) have n =1, ¢t = 0, yo = 1, and F(y) = —vy, so that
y(t) = e7*. Then, from (1.25), §(t) = r(t) where r(z) is a rational approximation to the exponential
e~ # given by:

(1.27) r(2) =1 - 20T (I + zA) e

Expanding this expression shows that r(z) is a vth order approximation to the exponential if and
only if (1.26) holds. Next, with regard to stability, an IRKM is said to be Ag-stable if:

(1.28) Ir(2)| <1 Yz >0,

and strongly Ag-stable if:

(1.29) sup |r(2)| < 1 Vzo > 0.
22z
The former is required of all IRKM’s considered here, but for cases (1.1.ii) and (1.1.iii), the latter

is assumed. Note that the spectrum of A, o(A) is related to the poles of r(z) and in addition to
the above, it is assumed throughout this work that:




(1.30) o(A)c{2€C: Rz >0,z #0}.

Finally, for cases (1.1.ii) and (1.1.iii), optimal results seem to require the mild condition that:

(1.31) h? < ck

unless S, C H}. The approach used is preferred since other attempts have led to (1.31) regardless
of the boundary behavior of functions in S),.
Returning to the temporal discretization of (1.23), let a g-stage IRKM of order v > 1 be given.

Then, the constants {ajm}(l)g-"é"_l are well-defined by:

v—1
(1.32) D ajmm! =(-1)11e] Ae 0<i<v-1, 1<j<q (M|m=i=0=1)
m=0

since their computation involves the inversion of the v x v Vandermonde matrix {m'}o<m,i<v—1-
Next, with n*k = t*, and t* = nk, for v -1 < n < n* — 1, suppose the approximations
{UP}R o C Sh are given, where U® ~ u™ and u™ = u(x,t™). Now, with L; = [L2}?, define

the extrapolation operators £ ™ : [L2]Y — L to have components:

v—1
(1.33) EPfR= Y ajmf(x,t" ™ UR"™ VUR™™)

m=0
with appropriate modifications for cases (1.1.i)) and (1.1.ii). Also, with 8, = [Si]?, define
Bh:Sh—>Sh and Po:Lz—'Sh by:

Ly = diag{Ln} and Po = diag{Po}.
axq gxq

Finally, let U, ,':“ ~ y™*! be given by what is henceforth called the principal scheme:

(_f,': = eUp _kAﬂh[_],':+kAPo€nfh
(1.34)
UMY = UP— kT LATP + k6T Pl fy

where U € S, and £™f), respectively, are well-defined provided [I + kAL4] is invertible and the
approximations are sufficiently accurate. Here, AL, for example, is understood in the sense of
composition of operators defined on S;. Note that (1.23) and (1.34) are only partially patterned
after (1.24) and (1.25), i. e., the stages U are not fully implicit, and extrapolation circumvents
the solution of a nonlinear system of algebraic equations for each n.

Since the extrapolation for the principal scheme uses previously computed approximations, a

starting procedure is required to generate {U*}u_%. Hence, for i > 1, define »; = min(v,1), and

as with (1.32), let the constants {a;‘,’,'l}gé:é?:'f_(;;g;:) be determined by:

vi—-1 .
(1.35) Y afs(m—~n) =11e] Ale 0<I<y-1, 1<5j<q ((m—n)|m-nz=0o=1).
m=0



Then, with 0 < n < min(¢ - 1,v — 2), and m; = min(j,v—1),1 < j < ¢, m; = n,j = 1, suppose the
approximations {U,"’ }géffs‘m’_ C Sy, are given, where U, ~ u™. Next, define the extrapolation

operators £™* : [L]¥ — L, to have components:

' n - u'.-—l . 3 .
z a;.';;f(x,t"‘, Uy, VUt + Z a;-';;f(x, tm, U,:""_l, VU,:"""I),
, m=0 m=n+1
(1.36) 5;" h = 9 0<n<y;—-2
v.'_l - - -
a™ f(x, t™, U, V™), n=i-1<v-2
im h h
\ m=0

with appropriate modifications for cases (1.1.i) and (1.1.ii). Finally, let U}’ FLi o yntl e given by
what is henceforth called the starting scheme:

O = eUp' — kALRUD + EAPE™ fy
(1.37)

U"+1’i = Un’i - kaﬂh(_]n’i + kaPofn"'fh.
h h h

With regard to the initial data U 0.4 = yo 7 > 0, for case (1.1.i), the following is sufficient:
h h> )

(1.38) UP = Pou®.

However, for cases (1.1.ii) and (1.1.iii), it is required that:

(1.39) UP = [I + kLy)™1Po[I + kL]u®.

The cases (1.1.1) - (1.1.iii) are now analyzed separately in the next three sections.

2 Semilinearities Independent of Spatial Derivatives

In this section, the principal scheme (1.34) is analyzed for the approximation of the solution
to (1.1) in case (1.1.i), and (1.9) is established. That the stages are well-defined depends on the
Lemma below. Its proof involves a spectral argument after A is transformed to Jordan form, and
the details are provided by Karakashian [13]. First, define the product space norm:

el = 3 ll:ll?y = & € Ls.
=1

Lemma 2.1 Provided (1.30) holds, [I + kAL}] is invertible and:
(2.1) (kLR)[T + kALK X < || X]| VX €S, 0<0<1
]
Now, sufficiently accurate starting approximations are assumed given and forv—1 < n < n*-1,

an error equation relating Uy — w™ to U ,’:"’1 — w™! appears below. For the sequel, make the
definitions:



enEU'r:_wn’ ﬂnEun—wna anf(x)tnaun)s

v v—1
e =) Aleduk!, £1f=) ajmfr™, 1= f(x,t,U7),
=0 =0
L = diag{L}, Pe =diag{Pg}, ran=1I-kbTLa[I+EkALy] e.
gxq axq

After some straightforward calculations, the following error equation is obtained:

Ertl = ppén + kBT LL[I + kALK 1 P{@" — eu™ + kALT" — kAL f}
— kbT La[I+ kALL™(Po - PE) (8" — eu™)
+ (PO _ PE)(u"+1 - un)

(2.2) —  Pof{u™tl —un 4 k6T Lu" — kbTER S}

4
+ KBTI+ kALK P[ENfa~ENfl = rab™+ D ¢+ 6™,
=1
v—1<n<n*-1.

Stability follows with a spectral argument, and additional details connected with the following
proposition are provided by Crouzeix [8].

Proposition 2.1 If the rational function (1.27) satisfies (1.28), then there ezists a constant ¢ < 0,
such that:

(2.3) liraxdl < (1 +k)||xl VX € Sh.
Furthermore, ¢ < 0 if (1.29) is satisfied, and k is small enough. ]

Next, the order of consistency is established in the following. Also, ¢™ is majorized by terms
which are summed out in the convergence proof.

Proposition 2.2 The terms {¢'}i, of (2.2) satisfy:
4

(2.4) 2Pl < ek(h” + k*){[18¢  ullogo + 1|87 ll2,00 + [|Bets]lr,c0}-
=1

Also, if {UP~™}v- 1) are given satisfying:

m=0

(2.5) ocmax U™ — 6" |z, < b,

then ¢™ of (2.2) satisfies:
v—1
(2:6) 167 < ek llullr.oo +ck 3 1€"™].

m=0



Proof The terms of (2.2) are considered in the order in which they appear. Since for 0 <1 < v,
dlu € H?*n Hj, by (1.1):

v v
" —eu® + kALE = ) Aledlu"k'+ ) A*le[Lolun]k! !
=1 =0

v
— _Au+lea;/+1unku+1 + kAZA‘eaﬁf"k‘.
=0
By (1.32):
v—1
(2.7) £nf =Y Aledlfrk + E

=0
where E has components:

tn—m

E;= (V_—l-l_)!:g::oajm/t. (t"™ - 8)¥18Y f(s, u(s))ds.

3

Now with (2.1) and (1.1), it follows that:

(2.8) 2l < ek {187 ulloco + 118F flloeo} < ck**{]|0F  ullo,co + (107 ullz,00}-
Next, as with (1.32), the constants {B;m 2%;’2" are well-defined by:

1 4
> Bimm' = MW'eT Ale(1 — 810) 0<i<y, 1<j<q (Mm=i=o=1)

m=0

where §;; is the Kronecker delta. Hence, define the extrapolation operator X'™ to have components:

z mk

XPu= ) Bimu(t"+ —) 1<j<gq
m=0
so that for 0 < p < v, with ill-defined sums understood to be zero:
P
X™u = E Aledlu™k! + FP
=1

where F? has components:

3

P 1 Yy t”+m7k mk 1 .
=Y Bim /t (" + 2= - )707  u(s)ds 1<j<q
"m=0

Now note that 47 is given by:
7 = kbT[I+ kALK 1PL[E" — eu™ — X"y

—kaﬂh[I + kALL"H{ Pola™ — eu™ — X ™u] + [Po — Pg|X"u}.

10




With (2.1), (1.19), and (1.20), it follows that:

lvzll < ckllL[A”edyu™k” — F¥-1|| + c|| F¥|| + c|[Po — PE]FO|
(2.9)

IA

ck(k” + h){[10Y ull2,00 + 107 llo,co + [10etllr,c0}-
Now since: e

= [ (Po-P)d.u(e)ds,
with (1.19) and (1.20), it follows that:

(2.10) 93]l < ckh™||Orullr,0
Next, using (1.1), (2.7), and (1.26), the following is obtained:
v-1 kil v—-1
¥ = —Po{G+ Y dFtun ot ZbTA‘e[La‘ nEHT — S T Aledl frEHY — kBT EY

= —Po{G + bTAYeLdYuk"+! — kbTE}

where:
1

t"*'1 ~ 8)¥8¥* 1yu(s)ds.
u‘ ®

Then using (1.1):

vzl

IA

k{107 ulloco + 1|07 ull2,00 + 1197 fllo,00}
(2.11)

IA

ck**1{]|0F " ulloeo + 1187 ull2,00}-
Now, (2.4) follows after combining (2.8) - (2.11). Finally, because of (2.5), (1.2), and (2.1):

v—-1
llg™ll < ek 32 FR™™ = f77™II < cepk Z 1™ — 0™

m=0 m=0
and (2.6) follows with (1.19). L
Now set: ,
N (1) = [lullr.co + 18etllr,o0 + D 195ull2.00 + 187 ulo.co
=1
and (1.9) is finally established in the following.

Theorem 2.1 Assume that (1.28) and (1.80) hold. Suppose {U,:"}”':lo are given salisfying:

(2.12) o BBX_| UP ~ w™|| < c(h” + k)N (u).

Then, provided h=N/2(h™ + k¥) 4 yo(h) is sufficiently small, {UpYrZ, are well-defined by (1.34) and
the following holds:

(2.13) max ||Uh —u®| < c(h" + EY) N (u).

0<n

11



Proof. Set 8(h,k) = h~N/2(h7 4 k¥) + 4o(h). It is first established that for 8(k, k) small enough:

m m
. —_ < p.
(2.14) oJnax [IUR" — w1, < p

Note that by (1.14), (2.12), and (1.21), for 8(k, k) small enough:
U = w200 < b€ + In™|20s < cB(h,K) < p 0O<m<v-1

Now suppose that for each h and k, there exists an n = n(h, k) such that v — 1< n <n* -1 and:

{ 1
— <
(2.15) gg,as’g‘lth UL, <p
while:
(2.16) IO+ - w™* |, > 5.

Given (2.15), inequalities (2.3), (2.4), and (2.6) can be combined for the error equation (2.2) to
obtain:

v—1
€44 < (1+ SR)|EM) + cark(h™ + K1) N (w) + ek D (|16 v—1<l<n

m=0

After summing this over ¥ — 1 < | < n and applying the discrete Gronwall Lemma to the result, it
follows that:

v—1
(2.17) (€M < (1 + esk)™ I M + cat™ (A7 + K N (w) +esk 3 11€™11}

m=0
for c3 = ¢+ c2v > 0. Also, the exponential dependence on t* can be eliminated if ¢z < 0 [14]. Now
by (1.14), (2.17), (2.12), and (1.21), for 6(h, k) small enough:

U5+t = ™I, < kM€ + 107 |2, < eB(RE) < p.

This contradicts (2.16), and hence, (2.14) is established. In fact, (2.13) follows from (2.12) and
(2.17) after using (1.19). ]
See [14] for a proof of the following.

Theorem 2.2 Assume that (1.28) and (1.80) hold. Then provided h=NI2(R" + k%) + Yo(h) is
sufficiently small, {U"* %é:fs':."l are well-defined by (1.37) and (1.88), and the following holds:

ni_ n r i+1 <3< —-1.
OrggéJth W] < e(A" 4+ KN (u) 1<i<v-1
Therefore, (2.12) follows with Ul = U,':’"_l, 0<n<lv-1 [ ]
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3 Semilinearities Depending Linearly on Spatial Derivatives

In this section, the principal scheme (1.34) is analyzed for the approximation of the solution to
(1.1) in case (1.1.ii), and (1.9) is established. Again, sufficiently accurate starting approximations
are assumed given. Also, an error equation appears below, which differs in certain ways from (2.2).
For the sequel, define the new terms:

n= Y Aledlu"k!, g"=g(x,t",u"), fr=g"-Vu", gh=g(xt",U}).

Note that here, 4" contains one less term than its counterpart in (2.2). After some straightforward
calculations, the following error equation is obtained:

v-1
£l = rpen + KBT[I+ kALR " PoL{u" — eu™ — kA Aled;tlumk!}
=0

v—-1
+ kbT[I+KALK1P{ERf - D Aledt k')
=0

v—1
4+ kbT[I+ kALK Y (Po— PE)D_ Aledi unkt
(3.1) 1=0

v—1
- {w™ — W™ - kaZAleafﬂw"k'}
=0

4
€™+ DYl + 6",

=1

+ kbT[I4 kALL " Po[Enfn — E7F]

v—-1<n<n*-1.

Now for the present section, stability is established in the norm:

lixllly = {66 X) + k(Zax, X} X € Sh.

Proposition 3.1 Suppose that (1.29) is satisfied. Then for k small enough, there ezists a constant
¢ < 0 such that the following holds for (3.1):

4 1
(32)  [le™UE < (L +ER)NEE + ck Dol + efll (kL) 78" 1% + [I(kLa) 24"}
=1

Proof: Since it is assumed that v > 1, by (1.26) and (1.27), r(0) = 1 = —r'(0). So, let 21, 8 > 0 be
chosen so that:
|r(z)] <1 -0z 0<2< 2.

13



Next, define:

14+ (1+¢€)z
re(z) = 1+2
and fix € > 0 small enough so that with (1.29):
lre(2)r(2)| < (1 +e2)(1-02) <1 0<z<z,
and:
lre(2)r(2)] < (14 ¢€) sup |r(z)| < 1 2 < z.
222z

Then just as with (2.3), there is a constant ¢ < 0 such that:

(8.3) [Ire(kZa)rax|l* < (1 + k) Ixl” VX € Sh.
Now set ¢, = 1+ ¢, operate on both sides of (3.1) with [I 4 c.kLs] and integrate against £"*1.
Estimation of the resultirllg terms follows.
With x™ = [I + kLj|3€™, it follows from (3.3) that:
([ + cck Lara€™, €™1) = (re(kLn)rax™, x™1) < (1 +R)[I1€7)IF + €™ HIE-
By (1.18):
1
(U + cckLalgp, €Y = ({k™ 51+ cc(kLn) 2}, k5 {I + L7}E™)

1
kTP + deklLiem P 1<

IA

Finally:

(I + cckLn)g™, €™Y) = ({(kLn)™% + ce(kLn)7 )}, (kLy) 7 €™H1)

1
< e{ll(kLn)T7¢"? + |[(KLa) 31472} + ekl LE €712

Combining the above inequalities:

4
(€71, €M) + (14 Qk(Lag™ 1, €1) < J+ RN + FNE T + ek~ 2 IwplI
=1

1
+c{”(kLh)—%¢"”2 + ”(kLh)’;'qS"”z} + k|| LZ €712

and (3.2) follows readily. =
Now an analogue to Proposition 2.2 must be established for the stronger norm.

Proposition 3.2 Assume that (1.81) holds. Then the terms {¢}}i_, of (3.1) satisfy:

4
(3-4) 2 MePllly < ck(h + &){]18F  ulloco + 1187 ullz,00 + [10etallr.co}-
=1
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Also, if {Up~™}v—1) are given satisfying:

(35) mex UR" - g, <o,
and:
(56) o2 07 am < 2,

for some € > cy = sup ||u(t)||wiw, then ¢™ of (3.1) satisfies:
o<t

v—1
(3.7) (kLA™ 3™ |12 + | (kL) 76™||* < k(A l|ull-,c0)* + ck D 11" ™IF-

m=0

Proof By (2.1):

(3.8) 2l < ckllLA”edyu™k” || < k|0 ull2,00
Next, by (1.32), an analogue to (2.7) follows. Hence, by (2.1) and (1.1):
(3.9) ezl < ek *18% flloeo < ck*+ {10 ullo,00 + 107 ullz,00}-

Now, recalling the development prior to (2.9), with (2.1) and (1.30), the following is obtained:
¥l < ell(Pe — Po)[A”edY u"k” — F*71|| + cl|(P — Po) FIl.

Using s =2 and s = r in (1.19) and (1.20), with (1.31) it follows that:

(3.10)  [I¥5l; < ch?k|8F ul|z,00 + ckh]|Orullre0 < ck(k” + h"){]|0F ull2,00 + [|O¢ullr,00}

Next, set:

v—1
un+l —y" = ka z Alea:-f-lunkl
=0

H

so that Y = PgH and:
ezt < Hwzll® + ki Zav2illeg)l < $IPeH|? + 3% P LH|?
< || H|f +cl|(Pe - DH|* + ck?||H|3.
This estimation is then continued using s = 2 in (1.19) and applying (1.31):
liw2lly < ell Bl + e(h® + k)| H|lz < cl| H|| + ckl| H||-

By (1.26):
LT ol gl k¥
G”—f—za l' ,Z_;,b Aled;tu"k -(v-p )Btu;'- p=v-1Lv
where: e
GP = = (£ — 5)P3P+Lyu(s)ds.
p! Jin
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Hence:

kl/

(311) (il < GVl + ekl G - 8Fu"—la < ck* {10} ullo,oo + 1107 ull2,00}-
Now, (3.4) follows after combining (3.8) - (3.11). Turning then to the Gronwall terms, by (1.17)
and (2.1):

v—1

I(Ln)’$IF < ckd_ll(gh™™ —8"™) - VUR~™||?
(3.12) =,
+ ck)_||TFgm ™ - V(U™ — unm)|2 6 ==+1.
m=0

From (3.5), (1.3), (3.6), and (1.19), it follows that:

(5.19 (gr™™ —&"™™) - VU™l < ecpll€"™™ — 0™ ™|UF™ " lw 1.
3.13

< )| ™| + chT||ully 00 0<m<v-1.
Next, set:
DM =gnm, V(U;:_m _ un—m) 0<m<v-1.
By (1.8) and (1.12) with s = 2:

L
ITZD™™* = |T5D™"™||* + ({Th - T|D""™, D""™) < c| D"~™|2, + ch?|| D™~ ™.
Using (1.6) and (1.19):

-m _ .n—-m . n—m
”Dn—m”_l — sup ‘([Uh u ]’V [pg ])I
pEH} ”plll

< ecgl|€n™ — ™|

By (1.18), (1.31), and (1.19):

< el + chT||un ™,

BID™™]| < cohll€™™ = 0™ ™ < cll[€% ™ + eh”llu" .

Combining the above inequalities:

1
(3.19) [T v - ) < cllen iy + o lulloe 0<m <yl
and (3.7) follows from (3.12) - (3.14). .
Following (1.31), it is claimed that the relation between h and k can be avoided if S, < H}.
1
This can now be seen in the preceeding proof. If the range R(7}?) c H}, then using (1.17), an

1
inequality such as (1.8) can be established for 7}?. Given the latter, it would not be necessary

to triangulate with T in order to obtain (3.14). Now if this approach is taken and (1.31) is not
assumed, then the consistency result is:

4
2 Il < ck(h” + B + A2k 1){[18¢ ulloco + (187 ull2.00 + [[8sulr,00}-
=1
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However, since (1.31) is such a mild condition compared to the requirement that S, c H}, the
details of the result suggested here are not provided. Instead, (1.9) is established as follows.

Theorem 3.1 Assume that (1.29), (1.80), and (1.81) hold. Suppose {UJ"}4, are given satisfying:

(3-15) ocmax UR" = w™lly < e(h” + E*) N (u).

Then provided h~N/2k~Y2(h" 4 k¥) +~1(h) is sufficiently small, {UP}'_, are well-defined by (1.84)
and the following holds:

(3.16) max
0<n<n*

Proof: Set 0g(h, k) = h=N/2(h* +-k*)+~o(h), 01(h, k) = h~N/2k~Y2(h"+k*)+11(R), and let € > c,.
It is first established that for 8o(h, k) and 84 (h,k) small enough:

Up —u®| < e(h”+ k)N (u).

m m
. — <
(3.17) oJnax |IUR" — w1, < p and oJnax

Note that by (1.14), (3.15), and (1.21), for 8g(h,k) small enough:

U':n”Wl,oo S €.

U = 4™ Lo < B M2E™| + 191 < cBo(h, k) < p 0<m<v-1
Also, by (1.15), (1.18), (3.15), and (1.22), for ,(h,k) small enough:
MU lwree < ch™N2)|E™]|1 + 0™ |lwieo + cu < cBi(hyk) +cu < € 0<m<v-1

Now suppose that for each h and k, there exists an n = n(h,k) such that v —1<n <n* -1 and:

1 _ 1 ! <3z
(3.18) fax ||V - ulie < b, Jax ||Upllwi= <
while:
(3.19) either ||UM —u™ Y >p,  or |[UMY|wie > .

Given (3.18), inequalities (3.2), (3.4), and (3.7) can be combined for the error equation (3.1) to
obtain:

v—-1
IEHIE < (1 + ERYIEHE + eak((W + RIN@P +eak 3 IIE™F  v-1<i<n
m=0

After summing this over v — 1 < I < n and applying the discrete Gronwall Lemma to the result, it
follows that:

v—-1
(3:20) € YIE < (1 + esk)*HA{IE T IT + cat (B + BN ()] + sk D llE™IIT}
m=0

for c3 = ¢+ ¢cav > 0. Also, the exponential dependence on t* can be eliminated if ¢3 < 0 [14]. Now
by (1.14), (3.20), (3.15), and (1.21), for fo(h, k) small enough:

[T+t — wtg, < R NEEM 4 (10" |1, < cbolh,K) < p.
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Also, by (1.15), (1.18), (3.20), (3.15), and (1.22), for 8;(h, k) small enough:

MU lwroe < ch N2 |1 + [0™ Y [ wieo + cu < ey (R, k) + cy < E.

This contradicts (3.19), and hence, (3.17) is established. In fact, (3.16) follows from (3.15) and
(3.20) after using (1.19). [
See [14] for a proof of the following.

Theorem 3.2 Assume that (1.29), (1.80), and (1.81) hold. Then if h~N/2k=1/2(hr + k3/2) 4 4, ()

1s sufficiently small {U,?"}(I)E:‘iz;;lh y_1) @re well-defined by (1.87) and (1.89), and the following

holds: /
ni_ n < r kc' 2+1 <i< 1
0<n<mintv~1) R = "l < e(h” + )N (u) 1<i<2v-1

Therefore, (3.15) follows with U} = U:’z("—l), 0<n<v-1. .

4 General Semilinearities

In this section, the principal scheme (1.34) is analyzed for the approximation of the solution to
(1.1) in case (1.L.iii), and (1.10) and (1.9) are established. For this, the basic structure of previous
sections is followed and in fact, several of the estimates of section 3 are readily adapted. First, the
error equation (3.1) serves here but with:

f* = f(x,t",u", Vu"), fr = f(x,t%,UR, VUR).
Stability is now established in the norm:

1
lxllle = {(Lnx, x) + F(Lix, x)} 2 X € Sh.

Proposition 4.1 Suppose that (1.28) is satisfied. Then, for k small enough, there is a constant
¢ < 0 such that:

(4.1) NE™ Iz < (1 +ER)IEMI + k™M |[T + kLa)(€™ — rag™)|I*-
Proof. With e =1+¢€ and x" =Ly + kLi]%C", from (3.3) it follows that:
([Lh + CskLi]rhfn: En+1) = ("e(kLh)rhxn: Xn+1)

< Fa+ER)lens + Fleriz.
Also:

([Zh +eckLE)(§™ = rag™), €™41) < ck™Y|[I + ELA)(E™" — ra™)|” + eklll€™ |3

and (4.1) follows after summing these inequalities. u
Now, the new terms of (4.1) must be treated differently.
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Proposition 4.2 Assume that (1.81) holds. Then the terms {y}}{—, satisfy:

4
(42) DI + kLalgPl| < ck(hT + E){|8} T ulloo + 1107 tll2,00 + [|0eullr,00}-
=1

Also, if {UF"™}41, are given satistying:
(4.3) o max_ U™ — u™ e < p,
then @™ satisfies:

v—1
(4.4) 12+ kLa)$™| < ckh™lullroo + ck 3 1€l

m=0

Proof: For (4.2), inequalities (3.8), (3.9), and (3.10) are readily extended by using § = 1 in (2.1).
Then, with ¢ = PgH as in Proposition 3.2:

117+ kLalW2ll < 1921l + kI PoLH| < [[(Pe — DH|| + [|H|| + Kl LH]|

and the remaining component of (4.2) follows as with (3.11). Now, by (2.1):

v—1

IR < ek D NFUR™, VUR™™) — f(um™, VU™

m=0

v—-1 N
+ ck Z Zl'f(un_'n’Vj"——lm) - f(“n_m’vjn—m)” §=0,1

m=0j=1

where V' = VUP, V§ = Vu” and:

VP = (354", 054", 02, U, .., 82, UDT 1<j<N-1.
Using (4.3), (1.4), (1.19), and (1.18):
IFUR™,VUR™™) = f(u™ ™ VU™ < ecpll€™™ — "™

IA

cll€”™lly + ch"[|uflr,co0 0<m<v-1
Similarly:

I, Vi) = F VS ceplldny(€nm = nm )

IA

clllg® ™l + ch™Hullreo
1<j<N, 0<m<v-1
and (3.7) follows after combining the last three inequalities. n

The groundwork for an H! estimate is now complete. For an L estimate, the natural impulse
is to press the details surrounding (3.14) for a generalization to the case (1.1.iii). In search of an

19



analogue to the H~1 estimate prior to (3.14), it is tempting to suppose the existence of constants
p, ¢p > 0 such that for 0 < ¢t < t*, the following are satisfied:

YU,,Uz € Wh®  satisfying n;:lgl;?éisN”a"(Um —u)||lL. <o

1£(2, u(2), VU2) = f(8,u(t), VU)||-1 < c,[|U2 — Th|

and:
2,00 i 1 -
YveWw satisfying lrsngvllaz.-(v u)l|lr., <o

f(x,t,u(x,t), Vo(x)) € Whee,

However, it is shown in [15] that these conditions are actually equivalent to the following:
( 3 {fm(x!t’u(x’t))}zvvt:ocwl'oo) fE(fl:f2)-",fN)T

1,00 . . _ <
) such that YweW satisfying nax, 10z (w —w)|lL, <o

f(x,t,u(x,t), Vw(x)) = fo(x,t,u(x,t)) + £(x, t,u(x,t)) - Vw(x).

\

In fact, this is at the heart of the division (1.1.i) - (1.1.ii). Nevertheless, it is clear that a new
approach is required for the term ¢™ before an optimal L; estimate can be proved.

Proposition 4.3 Assume that (1.81) holds and suppose {U; ™™ v-1 are given satisfying:

m=0

(4.5) omax UR™™ — u" e < p,

Then with € € (0,1), pn,c = maz{0, %— — 14 €}, 9™ satisfies:

v—1
-1 AN r n—
(kLK) 262 + |(kLA)5"(2 < ck(h"||ullrco)? + ck Y [ €™ ™|
m=0

(4.6)

v—1
+ c(khTZPNEY " |\Up™ — urm||4,

m=0

Proof. By (1.17) and (2.1):

v—-1
I(RLA)’$™1 < ck D NF(UR™™, VUR™™) = f(um™, VUF~™)|1?

m=0
(4.7)
v—-1 1
+ ek ) TS (W VURT™) - fwrm Va2 0=}
m=0

From (4.5), (1.4), and (1.19), it follows that:
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IA

If(UR~™, VUR™™) = f(u""™, VU™
(4.8)

ccol|€™™ — 9" ™|

IN

e[|€"~™| + eh|jullr.c0 0<m<v-1

Next, combining (4.5) and (1.5), {D;-""‘}?E;"’S:,"l and {Ez"m}géxﬁ';l are well-defined by the
following: o -

N
fur™, VU™ - f(u™ ™, Vur ™) = Za,,.(U,, ™ —um™)dy f(u™, VUt )+
i=1

N 1
3 B (U™ = w3, (U™ - w) [ (1-8)9%4, f (w7, V[unm 4 (U™ - w )]s
i,j=1 0

N N
=) D™+ > EF™ 0<m<v-1
i=1 ig=1
(4.9)
Now, by (1.8) and (1.12) with s = 2:
3 n- 1on- - -
|72 D7F~™|1* < |IT3D7™™|* + (IT» — TID}™™, Df™™)
< || DF™|2, + ch?|| DF™||? 1<j<N, 0<m<v-1

The first of these two terms is estimated as follows using (1.7), and (1.19):

10y = sup (=W 2e, 100, TN
’ ooy Tl

< eepllgrm = < el + chTl|um T
1<j<N, 0<m<v-1
For the second term above, with (1.7), (1.18), (1.31), and (1.19) it follows that:
RIDF™™ < cerhll€ ™ — "™ < ell§* ™y + chTju" i
1<j<N, 0<m<v-1.

Combining the last three inequalities:

N
1
(4.10) 1722 _DF ™| < elll €™l + ch"llullroo0 0<m<v-1L
i=1
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Next, using (4.5), and (1.5):

3 1

i En—m Tz T3
ITEE ) = aup BTN g ey g 105 Pl
(#.11) vela el cetr Nell

1<4,j<N, 0<m<v-1.
By the Sobolev Imbedding Theorem (See Adams [1]), since S, ¢ W1, for € € (0,1):

LY 1 1
1w ellze = sup T p(x)] < (TR ellwrva-o-1 Vo € L.
X
In case N = 1, with e = % this is sufficient for what follows. For N > 2, note that by (1.16):

1 1
”Th2 ‘P”WI,N(l—c)-l < Ch—N/Hl—E”Tth”l Vo € L.

In any case, from (1.17) and the last two inequalities, it follows that:

i —
(4.12) 172 Pllza, < c()h™PNe|lgl] Vo € La.
Combining (4.11) and (4.12):
N

1
(4.13) ITE S B ™ < c(h™PHelUp-™ —ummf  0<m<y-L
£,7=1

Then, combining (4.10) and (4.13) for (4.9):

1
T3 [f (w=™, VURT™) = f(u™ ™, V)il < ch™|luflroo +clli€™™llly

(4.14) (™ PNUR™ — un ]
0<m<v-1.

Now, (4.6) follows after combining (4.14) and (4.8) for (4.7). »

Note that the remarks made prior to Theorem 3.1 apply here as well. Nevertheless, the conver-
gence results (1.10) and (1.9) are now established as follows.

Theorem 4.1 Assume that (1.29), (1.80), and (1.81) hold. Suppose {U*}v-, are given satisfying:

(4.15) x_(UR = w™ll; < e(h™F + KN (u).

o<mey.
Then provided h=N/2(h™=1 4 k) 4 ~,(h) is sufficiently small, {UpYn_, are well-defined by (1.34)
and the following holds:

(4.16) ofmax [|Ux - "l < c(h™ + k) N (u).

If {Ur}2) also satisfy:
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(4.17) oz IUF =l < ofh” + KN ().

then:

(4.18) max
0<n<n*

U —u™| < e(h” + k)N (u).

Proof: Set 8(h,k) = h~N/3(h"™"1 + k*) + ~1(h). It is first established that for 8(h, k) small enough:
(4.19) O&asxn_”U,{" - u"jpre < p.

Note that by (1.15), (1.18), (4.15), and (1.22), for §(h, k) small enough:

U — u™||wie < ch'N’lzllﬁmlll + In™lwie < cO(h,k) <p 0<m<wv-—1.

Now suppose that for each h and k, there exists an n = n(h,k) such that v —1 < n <n* -1 and:

i1

(4.20) oxglaéxn”Uh u'|lwie < p,
while:

(4.21) (U — u™ 10 > p.

Given (4.20), inequalities (4.1), (4.2), and (4.4) can be combined to obtain:

v—-1
EHIZ < (1 + ER)EN + cokl(h™* + BN ()] + c2k D 1€l v—1<ls<n.

m=0

After summing this over v — 1 < I < n and applying the discrete Gronwall Lemma to the result, it
follow that:

v—1
(4.22)  E™I2 < (14 csk)™ IS + eat” (B + BN ()] +esk D 1l1€™ 12}

m=0
for c3 = ¢4 cov > 0. Also, the exponential dependence on t* can be eliminated if cs < 0 [14]. Now,
by (1.15), (1.18), (4.22), (4.15), and (1.22), for 8(h, k) small enough:

1UR*Y ~ a™lwree < ch™NH|EM 2 + 10" lwree < cB(R,E) < p.

Hence, (4.21) is contradicted and (4.19) is established. In fact, (4.16) follows from (4.22) and (4.15)
after using (1.19).

Now, if (4.17) holds, (4.18) is obtained as follows. Given (4.19), inequalities (3.2), (4.2), and
(4.6) can be combined to obtain:

v—-1
EIE < (L + BRNENR + cakl(h + RN WP +esk 22 MIE™IE  w-1si<n"—1
m=0
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since for small enough € and 0(h,k), r—2—-pn>0 and:

(el + E)N (1) + (DR PN[(h= + KN (W)Y < c[h=2-PNie 1 0(h, K)R[(R" + k*) W (w)

IA

cal(h” + K¥) N (u)]2.

After summing over v — 1 <[ < n < n* — 1 and applying the discrete Gronwall Lemma to the
result, it follows that:

v—1
(423) 1€ < (1 + cak)™FH{IETHIT + cat* (A7 + )N (w)]* + cok D [lE™IT}
m=0

for c¢ = ¢+ c4v > 0. Again, the exponential dependence on t* can be eliminated if cg < O [14].
Finally, (4.18) follows from (4.23) and (4.17) after using (1.19). n
See [14] for a proof of the next Theorem. It requires the inequality:

1 _
(4.24) NLE X! < ch™ il VX € Sh
which depends on inverse properties such as (1.14) - (1.16).

Theorem 4.2 Assume that (1.29), (1.30), (1.81) and (4.24) are satisfied. Then provided
h=N/2(RT=1 4+ k3/2) + 4y(h) is sufficiently small, {U:"}:éf;;;éilv_l) are well-defined by (1.87)
and (1.89) and the following holds:

ni_ on < r—1 i/2+41 << 1.
OSnsglliizS',u—l) MU — @™l (A" '+ k YN (u) 1<i<2v-1

Therefore, (§.15) follows with Ul = U"’z(v_l), 0 < n<v-1. Furthermore:
h h

ni _ n < r (i+1)/2 <i< _
onsi® ) MUK = @™l < e(A" + K )N (u) 1<i<2w—1

and (4.17) follows with U} = U,':’z"_l, 0<n<v-1.

5 Computational Aspects.

Note from (1.34) and (1.37), the need of an efficient method for solving linear equations of the
form:

[I+kALLY =& ¥, € S,

In connection with parallel implementation, it can be seen below that the preferred methods are
those for which the eigenvalues of A are distinct. So, let these be called multiply implicit (MIRK)
methods.

First, consider the use of IRKM’s which have high order with respect to ¢, such as the Gauss-
Legendre (v = 2q) or the Radau (v = 2¢ — 1) methods (See e. g., Dekker and Verwer [9]). These are
Ap-stable, and the latter are strongly Ag-stable while the former are not. Also, though each class
of methods satisfies (1.30), for neither is (4) C R. Nevertheless, these are (complex) MIRK’s, for
which A can always be transformed to quasidiagonal form:
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A=S"1AS

where for some m, 1<m< q:
A =dia A;
1<l‘<g { S})

and:

either A;=X;>0 or A;= o« —h ai, (i >0 1<i1<m
B o

Then, the linear system can be written as:
[I+ kALL](ST) = (S®)
which decouples to equations of the form:

and:

I+ kal, —kBL 1
kBLy I+ kaly 2

Note that the subordinate equations can in principle, be solved simultaneously. Further, the 2 x 2
system is equivalent to the following pair of equations:

= [ﬁ; ] Vi, di € S, i=1,2.

(I + kaLply = ¢1 + kBLat;

and:
[T+ 2akLy + (o + B2)k L2 = [I + kaLp)ps — kBLyé1 = Xo-

Following Baker, Bramble and Thomée [2], since for z € R:

1 51z — —17..2 2\ - _ .
faneed — —_— =2 s = ,
1+ 20z + (o? + f?)a? 1 m[1+z2:c] a=Zatf(a’+F), n=ath

complex arithmetic can be used to obtain:
1!)2 = X0 — k§R{zl[Th + szI]_IXO}.

Next, in spite of the order barrier v < ¢+ 1, consider methods for which A is similar to a matrix
of the form:

AL Y .
0y Ay Ai >0, 1<1<¢
A=
T ;=0o0rl, 2<i<gq
0 0y Aq
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so that the block system reduces to equations which are linear in Lj:

[I+Ek\MLp)y = é1
Yi,¢; €Sp, 1<75<4¢.
(I+kXLp)ys = ¢i—kO;Lppi—y, 2<i<gq

A class of (real) MIRK’s is obtained in case A; # Aj, 1 # jand §; = 0, 2 < ¢ < ¢q. The
depth of decoupling these methods allow in the above equations makes them appear, in a parallel
environment, more attractive than their complex counterparts above. However, the cost of this
advantage is reduced order.

On the other hand, the class for which A; = A, 1 < ¢ < ¢ is said to contain singly tmplicit
(SIRK) methods. Since these require the formation and factorization of only a single matrix with
the dimension of Sj,, SIRK’s are preferred if computations are to be performed on a serial machine.
A selection from the previous set was made for the example discussed below.

The following problem is of the class considered in Section 2:

dw = A%u+ f(z,t,u) in (-1,1)x]0,.1]

u = 0 on {-1,1} x[0,.1]
u(z,0) = 1-z? in (-1,1)
where:
_2-(1-2%)log(1+ X?)  2t(1-5z2) 4zit(t+ 1)(1 - z?) - ot
f(z,t,u) = i+ X) +(1+X2)t+1— 0T X5 X =1-(1+z°) u.
The solution is given by:
u(z,t) = 1-a*
T (4 )

For the spatial discretization, the Ordinary Galerkin Method was used and S} was constructed of
smooth cubic splines defined on a uniform mesh. For the temporal discretization, the following
three-stage diagonally implicit (DIRK) method was used:

~ 0 0 o = %+§§cos(-l%)
-7 v 0| 3
2y 1-4y q|1-4 B=[6(1-29)%1.

B 1-28 B

In the sequel, let (1.34), (1.37), and (1.38) be identified as the modified method. For comparison,
a classical method is now introduced. Define ™ : L; — L; to have components:

M) = f(x,t" + kri, é:) P c S,

Next, let U ,?’0 = eUp = ePpu® and after the stages {TJ ,':""‘}min("'") are computed as indicated below,
take:

m=1

min(n,v)
_,':’0_=_ Z (—1)'"“( n )(_],:“m 1<n<n" -1
m=1 m
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[ k,h | CPU Time (sec) [ L; error (x10°) | Order |

1/50 12 21.4

1/60 17 9.94 4.20

1/70 23 5.30 4.08

1/80 31 3.0 4.03

1/90 39 1.93 4.01
[1/100 45 1.26 4.00

Table 1: Modified method

[ k,h | CPU Time (sec) | Ly error {x 10°) | Order
1/50 51 408,
1/60 67 245. 2.80
1/70 87 158. 2.84
1/80 112 107, 5.88
1/90 136 76.4 2.91
1/100 168 56.0 2.94

Table 2: Classical method

Then define:
Ot = [1+ kAL {eUR + KAPF™(U}' )} 121, 0<n<n’ -1
and:
op = gprex(vii-nd) 0<n<n' -1
Finally, take:
UPtt = Up - kT LyO + kb PoF™(U}).

Now, in addition to the modified and classical methods, let a hybrid method be given by (1.34),
(1.37), and (1.38), but with [! A’e replaced by T'e in (1.32) and (1.35).
These three methods were tested on the ICASE SUN 3/180. In Tables 1 - 3, the Ls errors:

E(k) = E(k,k), E(h,k) = JUF —u™||

are reported together with estimates of the convergence order obtained according to the formula:

_ log(E(ks)/E(ky))
Order = Tog (k2 /1) .

As expected, the classical method requires much more time because of the additional function
evaluations. Also, for the present example, the classical and hybrid methods offer roughly the same
accuracy. However, at least according to theoretical efforts, this is not to be generally expected.
Finally, note that the literature apparently does not contain an explanation of the better than
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| k,h | CPU Time (sec) | L error (x10°) | Order |

1/50 12 402.

1/60 17 244, 275
1/70 22 158. 2.82
1/80 29 107. 2.87
1790 37 76.3 2.01
1/100 46 56.0 2.04

Table 3: Hybrid method

second order convergence seen in Tables 2 and 3. In particular, with Lv = 8%v, v € H? N H{,
the above solution is not even in the domain of L?. Nevertheless, only second order convergence is
demonstrated for example, in Experiment 7.5.2 of Dekker and Verwer [9], where a stiff nonlinear
ordinary differential equation is considered. Further, the modified method has been applied to this

problem to give not only fourth order convergence, but accuracy exceeding that reported for any
method discussed in the Experiment.

References

(1] Adams, R. A., Sobolev Spaces, Academic Press, New York, London, Toronto, Sydney, San
Francisco, 1975.

[2] Baker, G. A., Bramble, J. H., and Thomée, V., “Single Step Galerkin Approximations for
Parabolic Problems,” Math. Comp., v. 31, 1977, pp. 818-847.

[3] Baker, G. A., Dougalis, V. A., and Karakashian, O. A., “On a Higher Order Accurate Fully

Discrete Galerkin Approximation to the Navier-Stokes Equations,” Math. Comp., v. 39, 1982,
pPp. 339-375.

[4] Baker, G. A., Dougalis, V. A., and Karakashian, O. A., “On Multistep-Galerkin Discretizations

of Semilinear Hyperbolic and Parabolic Equations,” Nonlin. Anal., Theory, Methods, and
Appl., v. 4, 1980, pp. 579-597.

(5] Bramble, J. H., Schatz, A. H., Thomée, V., and Wahlbin, L. B., “Some Convergence Estimates

for Semidiscrete Galerkin Type Approximations for Parabolic Equations,” SIAM J. Numer.
Anal., v. 14, 1977, pp. 218-241.

[6] Butcher, J. C., “Implicit Runge-Kutta Processes,” Math. Comp., v. 18, 1964, pp. 50-64.

[7] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
New York, Oxford, 1978.

[8] Crouzeix, M., “Sur I'approximation des équations différentielles opérationnelles linéaires par
des méthodes de Runge-Kutta,” These, Université de Paris VI, 1975.




[9] Dekker, K., and Verwer, J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential
Equations, North-Holland, Amsterdam, New York, Oxford, 1984.

[10] Dendy, J. E., Jr., “Galerkin’s Method for Some Highly Nonlinear Problems,” STAM J. Numer.
Anal., v. 14, 1977, pp. 327-347.

[11] Dougalis, V. A., and Karakashian, O. A., “On Some High-Order Accurate Fully Discrete
Galerkin Methods for the Korteweg-De Vries Equation,” Math. Comp., v. 45, 1985, pp. 329-
345,

(12] Friedman, A., Partial Differential Equations, Holt, Rinehart, and Winston, New York,
Chicago, San Francisco, Atlanta, Dallas, Montreal, Toronto, London, Sydney, 1969.

[13] Karakashian, O. A., “On Runge-Kutta Methods for Parabolic Problems with Time Dependent
Coefficients,” Math. Comp., v. 47, 1986, pp. 77-106.

[14] Keeling, S. L., “Galerkin/Runge-Kutta Discretizations for Parabolic Partial Differential Equa-
tions,” Ph.D. Dissertation, University of Tennessee, 1986.

[15] Keeling, S. L., “On Lipschitz Continuity of Nonlinear Differential Operators,” ICASE Report
No. 87-12, NASA Langley Research Center, Hampton, VA, 1987 (NASA CR-178263).

[16] Rannacher, R., and Scott, R., “Some Optimal Error Estimates for Piecewise Linear Finite
Element Approximations,” Math. Comp., v. 38, 1982, pp.437-445.

[17] Schatz, A. H., and Wahlbin, L. B., “On the Quasi-Optimality in Ly, of the Hj-Projection into
Finite Element Spaces,” Math. Comp., v. 38, 1982, pp.1-22.

[18] Thomée, V., “Galerkin Finite Element Methods for Parabolic Problems,” Lecture Notes in
Mathematics, v. 1054, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.

29



Standard Bibliographic Page

1. Report No. NASA CR-178264 2. Government Accession No. 3. Recipient’s Catalog No.
ICASE Report No. 87-13

4. Title and Subtitle 5. Report Date
GALERKIN/RUNGE~-KUTTA DISCRETIZATIONS FOR March 1987
SEMILINEAR PARABOLIC EQUATIONS 6. Performing Organization Code

7. Author(s)
Stephen L. Keeling

8. Performing Organization Report No.

87-13
10. Work Unit No.

9. %erforming Orgagizatio Name and Addre,

nstitute for Computer Appf&cations in Science
and Engineering 11. Contract or Grant No.
Mail Stop 132C, NASA Langley Research Center NAS1-18107

Hampton, VA 23665-5225
12. Sponsoring Agency Name and Address

13. Type of Report and Period Covered
Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 505-90-21-01
15. Supplementary Notes

Langley Technical Monitor: Submitted to SIAM J. Numer. Anal.
J. C. South

Final Report
16. Abstract

A new class of fully discrete Galerkin/Runge-Kutta wmethods is constructed
and analyzed for semilinear parabolic initial boundary value problems. Unlike
any classical counter part, this class offers arbitrarily high, optimal order
convergence. In support of this claim, error estimates are proved, and compu-
tational results are presented. Furthermore, it is noted that special Runge-
Kutta methods allow computations to be performed in parallel so that the final
execution time can be reduced to that of a low order method.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

Runge-Kutta methods, error estimates, 64 - Numerical Analysis
semilinear equations

Unclassified - unlimited

18. Security Classif.(of this report) 20. Security Classif.(of this page) |21. No. of Pages|22. Price
Unclassified Unclassified 31 A03

For sale by the Natjonal Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985) NASA-Langley. 1987




